
THEORETICAL-EXPERIMENTAL STUDY OF COMPLEX HEAT 

TRANSFER IN HIGHLY POROUS COMPOSITES 

N. A. Bozhkov, V. K. Zantsev, 
and S. N. Obruch 

UDC 536.21:536.33 

A probabilistic approach is proposed for modeling the physical characteristics 
of high-porosity randomly nonuniform media. The results of mathematical model- 
ing of complex heat transfer are compared with experimental data. 

High-porosity composites serve as basic elements of different types of systems designed 
to provide protection from the effects of heat. A tightening of the requirements estab- 
lished for these systems for the service conditions encountered by certain types of equip- 
ment is making it more important to develop materials with prescribed properties that will 
have the optimum service characteristics under the given conditions. 

One distinctive feature of highly porous composites is the fact that three heat-trans- 
fer processes can take place in them: conduction, convection, and radiation. The intensity 
of these processes is determined by the thermal loading conditions on the one hand and, on 
the other hand, by the material's physical characteristics (thermophysical, optical, hydrau- 
lic). These characteristics in turn depend on the structure of the material. Thus, the 
material's structure and the conditions of its use are the main factors which determine heat 
transfer in highly porous composites [i, 2]. 

The problem of developing thermal insulating material with prescribed properties cannot 
be solved without developing a mathematical model that links the structure of the material 
with its service conditions and its thermal state during service. 

Mathematical Model of Radiative-Convective Heat Transfer in a Layer of a High-Porosity 
Composite. The main contribution to heat transfer in a wide range of high-porosity compo- 
sites (HPC) is made by radiative-convective heat transfer (RCT) [3]. 

The mathematical model of RCT in a plane layer of an HPC bounded by opaque walls and 
having the length s includes the energy equation with the associated initial and boundary 
conditions and the equation (with corresponding boundary conditions) that describes radia- 
tive transfer in the diffusion approximation. The diffusion approximation is widely used 
to analyze RCT, combining good accuracy with relatively short computing times [4]: 
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The problem is concretized by assigning initial and boundary conditions for the energy 
and radiative transfer equations along with the values of the physical characteristics: 
volume heat capacity c(T) and thermal conductivity X(T, P); spectral absorption coefficient 
~; spectral scattering coefficient ~; refractive index n; scattering function ~(~); optical 
characteristics of the boundaries s2, e 2. The values of the optical and thermophysical 
characteristics depend on the structure of the material. Thus, we will take a closer look 
at the features of this structure. 

Structure of Fiber Composites. The study of the structure of HPC's has shown that they 
generally have several distinctive features that must be taken into account (Table i) when 
developing mathematical models. 

i. The composition of the HPC may include fibers made of different materials [5, 6] 
and thus having different thermophysical and optical characteristics. As a result, the 
structure-forming elements (fibers) are distributed with respect to the physical character- 
istics. Also, each composition is characterized by a certain ratio of the volume fractions 
of the components which enter into it. 

2. The fibers are also distributed according to size (length and diameter). The his- 
tograms describing this distribution and the main probability characteristics - the mathe- 
matical expectation and the dispersion - depend on features of the process used to make the 
HPC's and the raw materials used [i, 5, 7]. 

3. The fibers are additionally distributed according to orientation. The features of 
this distribution account for the anisotropy of the properties of HPC's [5]. 

4. A contact zone is formed at places where the fibers touch one another, the forma- 
tion of this zone leading to additional thermal resistance [6, 8]. The degree of thermal 
resistance due to the zone depends on the material of the binder and the dimensions of the 
zone, which may in the general case be random variables. 

5. The structure of HPC's may contain macroscopic defects in the form of pores, cracks, 
granules, fibers that have stuck together, globular particles, etc. 

6. Different compositions have different apparent densities. Scatter of the apparent 
density and distribution of this characteristic over the volume of the material are possible 
even for a given grade of HPC. 

The random character of the parameters of the structure-forming elements makes it 
necessary to regard HPC's as randomly nonuniform media and to use probability-based methods 
to perform the modeling. 
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Fig. i. Model structure. 
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Fig. 2. Elementary volume. 

The most important step in the development of mathematical models of physical charac- 
teristics is the choice of a model structure. 

Model Structure and Determination of Its Parameters. The model of the structure of a 
fiber composite is the foundation on which the model of physical characteristics is built. 
A study of the literature [5, 6, 9, 10] showed that the structural models developed earlier 
were deterministic and were oriented toward allowing for some structural feature while ig- 
noring the effect of different features on each other and the stochastic character of the 
parameters of the structure-forming elements. This approach seriously limits the range of 
application of the model and makes it necessary to develop a model structure that satisfies 
two conflicting requirements - approximate the original structure as closely as possible 
and be amenable to mathematical modeling. As such a structure, we propose a regular, ortho- 
gonal, randomly nonuniform system of fibers (Fig. i) in which the distribution of the fibers 
with regard to size and thermophysical characteristics is the same as in the original ma- 
terial. The main assumptions made are that the system of fibers is orthogonal and regular. 
We can use a regular structure because the fibers are positioned relatively uniformly in 
space. 

In order to substantiate the second assumption, we conducted special studies in which 
we verified the possibility of changing over from a nonorthogonal structure to an orthogonal 
structure while keeping the same values for the main characteristics: apparent density and 
thermal conductivity along the principal axes [2, 3]. Such a transition is possible if the 
following conditions are satisfied: 

~r = M [~ .v , (z l ,  G, zs, ~)1, 

I1/18 =M[(11/13)2], 

12/18 ='M[(12/la)2], 

(8) 

(9) 

(lO) 

1240 



where Pc and Pe.v are the apparent densities of the HPC and an elementary volume isolated 
within the model structure; s (i = i, 3) are the dimensions of the elementary vol_ume alon_~ 
the axes, these dimensions being equal to the dimensions of the model structure; s = i, 3) 
are projections of a fiber on the principal axes. 

These conditions make it possible to determine the characteristic dimensions of the 
model structure. The selection of a model structure and determination of its parameters 
make it possible to proceed to the next step - calculate the thermophysical characteristics 
of composites. 

Mathematical Modeling of the Physical Characteristics of Fiber Composites. We will 
isolate an elementary volume in the model structure (Fig. 2), this volume reflecting the 
features of the structure and being such that it is possible to calculate the value of a 
certain physical characteristic (such as thermal conductivity) for it. The value of the 
physical characteristic #i of the elementary volume depends on the random vector of the 
parameters of the volume 

= (Aj, /f j ,  [sJ, 0J, hsJ, A sj, ] = 1, 3), 

and is itself a random variable. However, if we examine a volume V n which includes n ele- 
mentary volumes, then the probability approaches zero that, with an increase in n, the value 
of the physical characteristic #n of the volume V n will deviate from a certain value taken 

n 
as the characteristic of the material. Since ~n is represented in the form ~=~.~i/n, 

i=l 

then in accordance with the law of large numbers as stated by Hinchin: 

Thus, as the physical characteristic of the material, we will henceforth take the mathemat- 
ical expectation of the characteristic for the elementary volume. 

We determine the random vector of the parameters $ in the space of elementary events ~: 
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A S s = t m ~ ,  J = l ,  3; k = l ,  K; l = 1 ,  L; 

p : l ,  P;  s =  1, S;  r =  1, R; m = -  1, M } ,  

Here, the mathematical expectation of the random vector function is determined naturally 
[ii]: 
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The probability of an elementary event p(m) is calculated through the probability character- 
istics of the structure-forming elements (fibers): 

3 
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Using the above method, we can calculate any physical characteristic of a fiber compo- 
site if we have the mathematical model of this characteristic for an elementary volume. 

Let us examine mathematical models of the physical characteristics of an elementary 
volume which go into the equations that describe radiative-conductive heat transfer. 

I. Apparent density is determined as the ratio of the mass of fragments of the ele- 
mentary volume to its value: 

3 3 
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2. Volume heat capacity is equal to the ratio of the total heat capacity of the frag- 

ments of the elementary volume to its value: 

3 3 

1=1 ]=l 

3. Thermal conductivity. Following [12], we have adiabatic (parallel to the heat 
flow) and isothermal (perpendicular to the heat flow) surfaces subdivide the elementary vol- 
ume into fragments and we determine the thermal resistances for these fragments: 

1 /e.v~ 
R~.vi (D -,t,~.,,.i S~.w~' 

where ~e.vi, ~e.vi, and Se.vi are thermal conductivity, height, and area of a fragment. 
Proceeding on the basis of a scheme in which the thermal resistances of the different frag- 
ments are connected, we calculate the thermal resistance of the elementary volume Re.v($) 
and its thermal conductivity: 

Z8 
~e.v (D = Re.v (~) 1112 
the  thermal  r e s i s t a n c e  of  t h e  e l em en t a ry  voiume (Fig .  2) For the adiabatic subdivision, 

is calculated from the formula: 
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4. The absorption and scattering coefficients are determined as the ratio of absorp- 
tion and scattering on elements of the fiber skeleton to the absorption and scattering in 
the elementary volume: 

2 3 
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] = I  ]=I 

The absorption and scattering efficiency factors kabsp and ksc t are calculated in ac- 
cordance with the Mie theory, which has been used with success to calculate the optical 
characteristics of fiber insulation [5, 12]. Playing an important role here are various 
approximations of the Mie theory [8], which along with being accurate significantly facili- 
tate the computing operation. 

The refractive index is equal to the sum of the refractive indices of the fibers when 
they have been assigned weights equal to the volume fractions of fibers entering into the 
composition of the elementary volume: 

3 3 

ls ,Ajn,~/~ l,. 

The nonlinearity of the heat-transfer model (1-7) and the large volume of computations 
necessary to determine the characteristics makes it mandatory to use numerical methods to 
calculate RCT in highly porous fiber composites. Mathematical models of the processes and 
the characteristics were realized in the form of application packages written in FORTRAN. 
One feature of the method being used here to calculate physical characteristics is the com- 
mon approach to the computation, which makes it possible to develop an efficient algorithm 
for performing it. An analysis of the sensitivity of the models that was made using the 
software we developed confirmed the need to make allowance for features of the structure of 
the material when mathematically modeling RCT in HPC's [i]. 

Theoretical-Experimental Investigatio n �9 In the final stage of our study, we must an- 
swer the question of the adequacy of the proposed mathematical model with regard to its de- 
scription of actual heat-transfer processes occurring in HPC's. As the object of investi- 
gation, we chose a fibrous quartz ceramic with the following parameters: porositY H = 0.95; 
mean diameter day = 2;~n; mean fiber length ~fav = 400 ~m; anisotropy = 2; ideal contact. 
The thermophysical and optical properties of the fibers and their distributions according to 

length and diameter were all known. 
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Fig. 3. Dependence of the effective 
thermal conductivity of a material 
based on SiO= fibers on temperature: 
points denote experimental results; 
curves show calculated results; i) p = 
760 mm Hg; 2) 0.i. 
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Fig. 4. Comparison of theoretical and experimental tempera- 
ture during the unsteady heating of the fibrous material: 
a, b) first specimen; l)_x = 0.08; 2) 0.28; 3) 0.58; 4) 0.78; 
c) second specimen: i) x = 0.13; 2) 0.28; 3) 0.5. 

The effective thermal conductivity of the material was determined on a unit which em- 
ployed the "hot-wire" method. Figure 3 shows the results of the calculation and experi- 
mental data on the effective thermal_conductivity in the temperature range T = 300-1300 K 
and the range of relative pressures p = 1-10 -4. The good agreement between the theoretical 
and experimental data reinforced confidence in the model and allowed us to proceed to the 
study of nonsteady heating regimes. Here, the tests were conducted for two specimens in 
the temperature range T = 290-1400 K with an air pressure P = l0 s N/m =. The specimens, 
with a thickness ~ = 0.06 m, were heated with a resistance heater. The experiments dif- 
fered in the character and rate of heating and cooling and the temperatures reached on the 
front surface of the specimen. The temperature field in the material was monitored with 
platinunr-platinum-Thodium thermocouples with a diameter d = 0.i mm. The thermocouples were 
installed at different depths in the layer. The temperature measurements were estimated to 
have been accurate to within several degrees [5]. The readings of the thermocouples located 
on the front and rear sides of the specimens were used as first-order boundary conditions 
when we performed the computations. The thermocouples were installed at the relative depths 
x = 0, 0.08, 0.28, 0.58, 0.78, for the first specimen and x = 0; 0.13, 0.28, 0.5, for the 
second. 
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An analysis of the test results (Fig. 4) shows the good agreement between the theoreti- 
cal and experimental data for all heating regimes. This confirms both the adequacy of the 
model "as a whole" and the adequacy of its constituent parts (such as the conductive part 
of the model in low-temperature tests). 

Thus, we have provided the main components needed to solve thermal problems encountered 
in the development of high-porosity fiber composites: a model of the structure of the ma- 
terial; a model of the physical characteristics; a model of the heat-transfer processes; a 
model of the thermal loading conditions; testing equipment needed to simulate the thermal 
loading conditions that will be encountered in service. 

NOTATION 

c, volume heat capacity; k, thermal conductivity; a, ~, b, spectral absorption coef- 
ficient, spectral scattering coefficient, spectral attenuation coefficient; n, refractive 
index; ~, emissivity; T, temperature; Qp, F, integral and spectral radiative heat flux; I~ 
Planck function; s size of elementary volume, thickness of layer of fibrous material; A, ~' 
transverse dimension of fiber in the model structure; s length of fiber; s length of 
element of the fiber skeleton in an elementary volume; P, pressure; M, symbol for mathemat- 
ical expectation; p, density; R, thermal resistance. 
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